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1.       Introduction   

 

Interest in flow of fluids with pressure-dependent viscosities (also referred 

to as pressure-thickening [12]) goes back to the nineteenth century and the work 

of Barus, [4,5], who suggested a relationship in which viscosity is an exponential 

function of pressure. Since then, the subject matter has been receiving 

considerable attention in the literature due to its various applications in industry, 

including lubrication theory (cf. [6] and the references therein). A number of 

models describing the relationship between viscosity and pressure in an 

incompressible fluid have been suggested and tested, and include exponential as 

well as linear relationships, (cf. [3,13,21] and the references therein). A general 

model describing the dependence of viscosity on pressure, temperature and 

density has been reported in Szeri [21]. In case of compressible flow, Housiadas 

and Georgiou [9] provided new solutions for weakly compressible Newtonian 

Poiseuille flows with pressure-dependent viscosity. 

An important problem of the flow of fluids with pressure-dependent 

viscosities is that of flow through porous media. This finds applications in various 

industrial and natural processes including groundwater and oil recovery (cf. [8,14] 

and the references therein). Various models and elegant analyses have been 

provided in the pioneering work of Rajagopal and coworkers (cf. [11, 15, 16, 17, 

19, 20] and the references therein). Modelling of flow of dusty fluids with 
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pressure-dependent viscosities through porous structures has also been considered 

due to its applications in contaminant transport into ground layers, [1, 7]. 

Less studied, however, is the flow of fluids with pressure-dependent 

viscosities through porous structures with variable porosity and permeability, 

which is more reflective of flow through natural structures, [7]. This is the subject 

matter of this work in which we study flow in an inclined porous channel of 

variable permeability using a model that has been developed to account for 

permeability variations [2]. The physical configuration is suitable for studying 

characteristics of the flow and has been used by other authors in the analysis of 

fluid flow with variable viscosity, [11, 18]. For the sake of illustration, we 

consider variations in permeability that are the square of pressure distribution. 

 

2.     Problem formulation and solution 

 

Consider the flow of a fluid with pressure-dependent viscosity through a 

porous sediment of variable permeability, and of depth h inclined at angle   to 

the horizontal. The flow configuration is illustrated in Fig. 1 which shows the 

orientation of the coordinate system used. It is assumed that the sediment is 

bounded by impermeable, solid walls on which the no-slip condition holds.    

 

 

 

                                   

 

 

 

 

 

 

 

 
Fig. 1. Representative sketch 

 

Flow in the above domain is governed by the equation of continuity and 

momentum equations, developed in [2] and are given, respectively, by: 

 

Continuity Equation: 

0 u


                                                    (1) 

Momentum Equations: 
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where u


 is the velocity vector, P  is the pressure,   is the fluid density, G


 is the 

gravitational acceleration, )(p   is the variable viscosity, and k is the variable 

permeability. 
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Equations (1) and (2) reduce to the following set of equations when the flow is 

through the configuration of Fig. 1: 

0sin  u
k

guupx


                                     (3) 

0cos  gpy
                                                  (4) 

with boundary conditions given by zero-slip on the solid boundaries y=0 and y=h, 

and a prescribed pressure at y=h (such as atmospheric pressure, say 0p ). Boundary 

conditions are thus given as: 
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Following Kanaan and Rajagopal, [11], assume that )(ypp   and introduce the 

dimensionless quantities: 

Uuuhyy /,/                                                 (6) 

then boundary conditions (5) take the form  
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and governing equations (3) and (4) can be written, respectively, as 
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General solution to (9) takes the form 

cyghp  )cos(                                                (10) 

where c is an arbitrary constant. 

Using pressure condition 0)1( pp  , we find that  cos0 ghpc  , hence 

(10) takes the form 

 cos)1(0 ghypp  .                                         (11) 

In order to solve (8) for )(yu , we assume that the viscosity varies with pressure 

according to 

pp  )(                                                    (12) 

where   is a constant. 

From (12) we obtain 
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and (11) gives 
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Equation (8) thus becomes 
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In order to solve (15), we need to specify the permeability distribution. In the 

current work, we choose permeability 2pk   for the sake of illustration, and 

assume this choice is valid for 10  y  while permeability falls to zero at the 

solid boundaries. With this choice of permeability equation (15) takes the form 
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Which, when (11) is utilized, becomes 
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Letting  

)1)(cos(0 yghpY                                       (18) 

we can write equation (17) in the form: 
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Equation (19) is an inhomogeneous Cauchy-Euler equation whose complementary 

solution is given by  
21

21

mm

c YaYau                                                      (20) 

where 1a  and 2a  are arbitrary constants, and 
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and 
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The characteristic roots, 1m  and 2m  satisfy the following equations 
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and the non-zero Wronskian of the solutions in (20) is given by 
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Using variation of parameters, the particular solution to (19) is constructed and 

takes the form 
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General solution to (19) is thus the sum of solutions in (20) and (26), namely 
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Vorticity of the flow is obtained from (27) as 
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The arbitrary constants 1a  and 2a  take the following values, obtained by using 

conditions (7) in (27): 
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3.      Results and discussion 

 

Velocity and vorticity profiles across the channel are obtained for the 

following ranges of flow and domain parameters: h=1, 1g ,  

50,20,10,5,2,1,8.0,5.0U , 75,60,30  degrees, and 5,3,20 p . 

 

3.1. Values of the Characteristic Roots and Arbitrary Constants: 

        Values of the characteristic roots are computed using equations (21) and 

(22). For 30 , 1g  the computed values are 154700539.11 m  and 

154700539.11 m . The corresponding values of arbitrary constants 
1a and 

2a  

for various values of ,U  are computed using expressions (29) and (30 and 

tabulated in Table 1, for the sake of illustration. 

 

Table 1: Values of 
1a ,

2a for 1h , 20 p , 1g , 30  

U  1a  
2a  

0.5 -3.248565346 -1.708648731 

0.8 -2.030353341 -1.067905457 

1 -1.624282673 -0.8543243654 

2 -0.8121413365 -0.4271621827 

5 -0.3248565346 -0.1708648731 

10 -0.1624282673 -0.08543243654 

20 -0.08121413365 -0.04271621827 

50 - 0.03248565346 - 0.01708648731 
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3.2. Pressure and Permeability Distributions 

       Pressure and permeability distributions across the channel for different values 

of 0p  are shown in Fig. 2(a) and 2(b) in order to illustrate their dependence on 0p . 

Effects of varying   on these distributions are shown in Fig. 3(a) and 3(b) to 

illustrate the decrease in pressure and in permeability with increasing angle of 

inclination. These figures are obtained by sketching equation (11) and 2pk  . 

The permeability distribution in Fig. 2(b) and 3(b) are over the interval 10  y , 

since we assumed that the permeability vanishes on the solid walls. 

 

 
Fig. 2(a). Pressure distribution across the channel for different 0p ; 

6/  , 1g , h=1. 

 
Fig. 2(b). Permeability distribution over 10  y for different 0p ; 

30 , 1g , h=1. 
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Fig. 3(a). Pressure distribution across the channel for different  ; 

20 p  , 1g , h=1. 

 
Fig. 3(b). Permeability distribution over 10  y for different  ; 

20 p ; 1g , h=1. 
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3.3. Effects of Varying U  

      Effects of varying U  on the velocity profile for a fixed angle of inclination 

and a fixed 0p are illustrated in Fig. 4(a), which depicts a plot of the parabolic 

velocity profile in (27) and shows a decrease in the velocity with increasing U . 

This may be interpreted in terms of (12), where viscosity is a linear function of 

pressure magnified by a factor of  . When    increases (hence U  increases), 

the fluid becomes more viscous and slower. This decrease in velocity with 

increasing U  can also be seen from (27), as this quantity appears in the 

denominator of the particular solution, hence its increase results in decreasing the 

contribution of the particular solution. 

Effects of varying U  on the vorticity profile for a fixed angle of 

inclination and a fixed 0p are illustrated in Fig. 4(b), which depicts a plot of the 

vorticity in (28), and shows an increase in the slope of the tangent to vorticity 

curves with increasing U . This may be interpreted in terms of the definition of 

vorticity as yu and the decrease of velocity with increasing U , thus 

implying that the parabolic velocity profile flattens or loses some of its curvature. 

In other words, the rate of change of the velocity with respect to the independent 

variable decreases in magnitude. For a given viscosity distribution, this also 

implies that the magnitude of shear stress decreases with increasing U . 

 

 

 
 

 

Fig. 4(a).  Effects of U  on the Velocity Profile; 

1h , 20 p , 1g , 30  
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Fig. 4(b).  Effects of U  on the Vorticity Profile; 

1h , 20 p , 1g , 30  

 

3.4. Effects of Varying 0p  

        Effects of varying 0p  on the velocity profile are illustrated in Fig. 5(a) and 

5(b), respectively, for the choice of parameters: 1h ,  1U , 1g , 
30 . 

For a fixed value of U , hence a fixed value of , equation (12) implies that 

viscosity increases with increasing pressure. Equation (11) indicates that pressure 

increases with increasing 0p  (for the fixed parameters chosen here). This in turn 

implies that viscosity increases with increasing 0p , thus decreasing the velocity. 

This is demonstrated in Fig. 5(a) where the velocity decreases with increasing 0p . 

The decrease in velocity with increasing 0p results in flattening the velocity 

profile, which in turn results in a decrease in the magnitude of the vorticity. This 

is demonstrated in Fig. 5(b).   

 

3.5. Effects of Varying   

        Effects of varying the angle of inclination, , on the velocity and vorticity 

distributions across the channel are illustrated in Fig. 6(a) and 6(b). With 

increasing  , gravitational effects become more pronounced, thus leading to 

faster flow down the inclined plane, as shown in Fig. 6(a), and a corresponding 

increase in the magnitude of vorticity, as shown in Fig. 6(b). 
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Fig. 5(a).  Effects of Varying 0p  on Velocity Profile; 

1h ,  1U , 1g , 
30 . 

 

Fig. 5(b).  Effects of Varying 0p  on Velocity Profile; 

1h ,  1U , 1g , 
30 . 
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Fig. 6(a).  Effects of varying on the velocity distribution across the channel. 

1h , 20 p ,  1U , 1g  

 

 
Fig. 6(b).  Effects of varying  on the vorticity distribution across the channel; 

1h , 20 p ,  1U , 1g  
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4.       Conclusion 
 

          In this work, we obtained the solution to flow of a fluid with pressure 

dependent viscosity through a porous medium with variable permeability. The 

configuration chosen was that of flow down an inclined channel to illustrate the 

determinate nature of a recently developed model. The variable permeability was 

chosen to be the square of pressure for illustrative purposes. However, other 

choices of variable permeability distributions are possible and depend on the 

application sought. 
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